

This article was downloaded by:

On: 30 January 2011

Access details: Access Details: Free Access

Publisher *Taylor & Francis*

Informa Ltd Registered in England and Wales Registered Number: 1072954 Registered office: Mortimer House, 37-41 Mortimer Street, London W1T 3JH, UK

Spectroscopy Letters

Publication details, including instructions for authors and subscription information:

<http://www.informaworld.com/smpp/title~content=t713597299>

Studies on Condensed Heterocyclic Compounds Xix. ^1H and ^{13}C Nmr Spectroscopy of 6-Aryl-3-(1-*P*-Chlorophenyl-5-Methyl-1,2,3-Triazol-4-Yl)-S-Triazolo[3,4-*B*]-1,3,4-Thiadiazoles

Xiao-Wen Sun^a, Chang-Hu Chu^a, Zi-Yi Zhang^a

^a National Laboratory of Applied Organic Chemistry, Department of Chemistry., Lanzhou University, Lanzhou, P.R. China

To cite this Article Sun, Xiao-Wen , Chu, Chang-Hu and Zhang, Zi-Yi(1999) 'Studies on Condensed Heterocyclic Compounds Xix. ^1H and ^{13}C Nmr Spectroscopy of 6-Aryl-3-(1-*P*-Chlorophenyl-5-Methyl-1,2,3-Triazol-4-Yl)-S-Triazolo[3,4-*B*]-1,3,4-Thiadiazoles', Spectroscopy Letters, 32: 6, 1025 – 1032

To link to this Article: DOI: 10.1080/00387019909350047

URL: <http://dx.doi.org/10.1080/00387019909350047>

PLEASE SCROLL DOWN FOR ARTICLE

Full terms and conditions of use: <http://www.informaworld.com/terms-and-conditions-of-access.pdf>

This article may be used for research, teaching and private study purposes. Any substantial or systematic reproduction, re-distribution, re-selling, loan or sub-licensing, systematic supply or distribution in any form to anyone is expressly forbidden.

The publisher does not give any warranty express or implied or make any representation that the contents will be complete or accurate or up to date. The accuracy of any instructions, formulae and drug doses should be independently verified with primary sources. The publisher shall not be liable for any loss, actions, claims, proceedings, demand or costs or damages whatsoever or howsoever caused arising directly or indirectly in connection with or arising out of the use of this material.

STUDIES ON CONDENSED HETEROCYCLIC COMPOUNDS
**XIX. ^1H AND ^{13}C NMR SPECTROSCOPY OF 6-ARYL-3-(1-*p*-
CHLOROPHENYL-5-METHYL-1,2,3-TRIAZOL-4-YL)-s-
TRIAZOLO[3,4-*b*]-1,3,4-THIADIAZOLES**

Key words: ^1H NMR, ^{13}C NMR, *s*-triazolo[3,4-*b*]-1,3,4-thiadiazole,
HMBC experiment, SCS effects

Xiao-Wen Sun Chang-Hu Chu and Zi-Yi Zhang*

National Laboratory of Applied Organic Chemistry, Department of Chemistry,
Lanzhou University, Lanzhou 730000, P.R. China

ABSTRACT

^1H and ^{13}C NMR spectra of eight novel 6-aryl-3-(1-*p*-chlorophenyl-5-methyl-1,2,3-triazol-4-yl)-*s*-triazolo[3,4-*b*]-1,3,4-thiadiazoles were measured and assigned on the basis of the additivity effects induced by the substituents, the signal intensities, data reported earlier for related compounds and two-dimensional HMBC experiment. The SCS effects of the *s*-triazolo[3,4-*b*]-1,3,4-thiadiazole nucleus on the aromatic ring were determined.

* To whom correspondence should be addressed.

INTRODUCTION

Attention has been increasingly paid to the chemistry of s-triazolo[3,4-*b*]-1,3,4-thiadiazole during recent years on account of its diverse types of biological properties, including antifungal, antiinflammatory, analgesic, hypotensive, hypocholesterolemic and anthelmintic properties.¹⁻⁴ Our earlier work on the synthesis of 3,6-disubstituted s-triazolo[3,4-*b*]-1,3,4-thiadiazoles revealed antibacterial, herbicidal and plant growth regulative activities for the compounds.⁵

⁷ An understanding of their biological effects requires a chemical and physicochemical knowledge of these compounds. To our knowledge, this class of heterocycles have not been previously subjected to a detailed ¹³C NMR study. Prompted by these observations, we report now the NMR spectroscopic characterization of some novel 3,6-disubstituted s-triazolo[3,4-*b*]-1,3,4-thiadiazoles, which will be useful in future work in terms of structural elucidation.

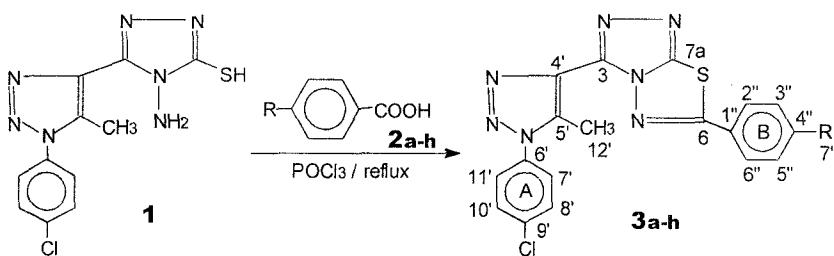
Experimental Section

Materials.

4-Amino-3-(1-*p*-chlorophenyl-5-methyl-1,2,3-triazol-4-yl)-5-mercaptop-1,2,4-triazole (**1**) was prepared by Reid-Heindel's general procedure.⁸ Yield: 55%. m.p. 190-192 °C. Elemental analysis found: C, 42.87, H, 3.21, N, 31.69; C₁₁H₁₀N₇SCl requires C, 42.93, H, 3.27, N, 31.86%. ¹H NMR (DMSO-*d*₆, ppm): δ 14.06 (s, 1H, SH), 7.74 (s, 4H, ArH), 5.89 (br s, 2H, NH₂), 2.46 (s, 3H, CH₃).

General procedure for the preparation of 6-aryl-3-(1-*p*-chlorophenyl-5-methyl-1,2,3-triazol-4-yl)-s-triazolo[3,4-*b*]-1,3,4-thiadiazole (**3_{a-h}**): A mixture of **1** (0.001 mol) and aromatic acid (**2_{a-h}**) (0.001 mol) in the presence of phosphorus oxychloride (5 ml) was refluxed over oil-bath for 6 hr. After removal of the excess of phosphorus oxychloride under reduced pressure, 50 ml water was added to the residue. The resulting solid was filtered, treated with 10 % aqueous sodium hydroxide, and then washed with water and **recrystallized** from ethanol-DMF.

Methods.


Melting points were determined on a Kofler melting point apparatus and are uncorrected. Elemental analyses were carried out on a 1106 analyzer. ¹H NMR spectra were recorded at 80 MHz on a Bruker FT-AC 80 instrument. ¹³C NMR spectra were obtained at 100.61 MHz on a Bruker AM 400 spectrometer operating in the CPD mode. Spectra were recorded in DMSO-*d*₆ solutions and 5 mm NMR tubes were used. All chemical shifts were determined on the δ scale (ppm) relative to internal TMS.

¹H NMR spectra were recorded with spectral width 1362.4 Hz, acquisition time 1.5 s, pulse width for a 90° pulse 3.0 μ s and relaxation delay 1.0 s. Typical conditions for recording ¹³C NMR spectra were spectral width 23.8 kHz, acquisition time 0.688 s, pulse width for a 90° pulse 5.0 μ s and relaxation delay 2.0 s.

¹H detected heteronuclear multiple bond connectivity experiment (HMBC) was performed using the standard pulse sequence. The values of 3.6 ms (Δ_1) and 50 ms (Δ_2) were used for the evolution of long-range ¹J_{C-H} couplings. The spectrum was acquired with spectral widths of F_2 2923.977 Hz (¹H) and F_1 18796.992 Hz (¹³C) employing a data matrix of 1024×160 zero filled to 512 and a relaxation delay of 0.8 s was used.

RESULTS AND DISCUSSIONS

The cyclocondensation of 4-amino-3-(1-*p*-chlorophenyl-5-methyl-1,2,3-triazol-4-yl)-5-mercaptop-1,2,4-triazole (**1**) with aromatic acids (**2a-h**) in the presence of POCl₃ afforded the corresponding 6-aryl-3-(1-*p*-chlorophenyl-5-methyl-1,2,3-triazol-4-yl)-s-triazolo[3,4-*b*]-1,3,4-thiadiazoles (**3a-h**) (Table 1). The ¹H and ¹³C NMR spectral data for **3a-h** are given in Tables 2 and 3. In the ¹H NMR spectra, the triazole methyl group appears as a characteristic singlet at around δ 2.63 ppm and the aromatic protons resonate at δ 7.14-8.46 ppm.

The ¹³C NMR spectra show the presence of the triazole methyl group in the range δ 9.58-9.62 ppm. The peaks corresponding to the signals of the aromatic ring A were readily identified due to the least variation in chemical shift values, which are in agreement with those previously reported for related compounds.⁹

TABLE 1

Yields, Melting Points and Elemental Analyses for Compounds 3_{a-h}

Compd.	Substituent R	Yield (%)	M.p. (°C)	Found (Calculated) (%)		
				C	H	N
3_a	H	49	276-278	54.73 (54.89)	3.19 (3.07)	24.61 (24.89)
3_b	4-F	64	227-228	52.30 (52.50)	2.77 (2.69)	23.62 (23.81)
3_c	4-Cl	63	230-232	50.16 (50.48)	2.70 (2.59)	22.53 (22.89)
3_d	4-Br	60	242-244	45.34 (45.73)	2.71 (2.35)	20.56 (20.74)
3_e	4-I	54	268-270	41.47 (41.60)	2.25 (2.13)	18.65 (18.86)
3_f	4-Me	52	182-183	55.69 (55.95)	3.57 (3.46)	23.82 (24.04)
3_g	4-OMe	50	203-204	53.88 (53.84)	3.33 (3.33)	22.66 (23.13)
3_h	4-NO ₂	63	278-280	49.03 (49.26)	2.73 (2.53)	25.23 (25.53)

TABLE 2

¹H NMR Spectral Data for Compounds 3_{a-h}

Compd.	¹ H NMR (DMSO-d ₆) (δ ppm, J Hz)
3_a	8.08-7.55 (m, 5H, ArH), 7.78 (s, 4H, ArH), 2.63 (s, 3H, CH ₃)
3_b	8.10 (dd, $J=8.78, 5.22$ Hz, 2H, ArH), 7.78 (s, 4H, ArH), 7.49 (t, $J=8.78$ Hz, 2H, ArH), 2.63 (s, 3H, CH ₃)
3_c	8.05 (d, 2H, $J=8.55$ Hz, ArH), 7.79 (s, 4H, ArH), 7.73 (d, 2H, $J=8.55$ Hz, ArH), 2.64 (s, 3H, CH ₃)
3_d	7.99 (d, 2H, $J=8.72$ Hz, ArH), 7.84 (d, 2H, $J=8.72$ Hz, ArH), 7.79 (s, 4H, ArH), 2.63 (s, 3H, CH ₃)
3_e	8.01 (d, 2H, $J=8.44$ Hz, ArH), 7.76 (d, 2H, $J=8.44$ Hz, ArH), 7.77 (s, 4H, ArH), 2.63 (s, 3H, CH ₃)
3_f	7.88 (d, 2H, $J=8.08$ Hz, ArH), 7.77 (s, 4H, ArH), 7.41 (d, 2H, $J=8.08$ Hz, ArH), 2.63 (s, 3H, CH ₃), 2.40 (s, 3H, ArCH ₃)
3_g	7.93 (d, 2H, $J=8.76$ Hz, ArH), 7.77 (s, 4H, ArH), 7.14 (d, 2H, $J=8.76$ Hz, ArH), 3.87 (s, 3H, OCH ₃), 2.63 (s, 3H, CH ₃)
3_h	8.46 (d, 2H, $J=8.65$ Hz, ArH), 8.27 (d, 2H, $J=8.65$ Hz, ArH), 7.78 (s, 4H, ArH), 2.64 (s, 3H, CH ₃)

TABLE 3
 ^{13}C NMR Spectra Data for Compounds $\mathbf{3}_{\text{a-h}}$

Carbon	$\mathbf{3}_{\text{a}}$	$\mathbf{3}_{\text{b}}$	$\mathbf{3}_{\text{c}}$	$\mathbf{3}_{\text{d}}$	$\mathbf{3}_{\text{e}}$	$\mathbf{3}_{\text{f}}$	$\mathbf{3}_{\text{g}}$	$\mathbf{3}_{\text{h}}$
C-3	140.03	140.04	140.05	140.05	140.05	139.96	139.89	140.23
C-6	166.88	165.76	165.73	165.88	166.22	166.80	166.45	164.93
C-7a	153.99	154.09	154.03	154.04	153.93	153.83	153.83	154.24
C-4'	132.22	132.21	132.15	132.15	132.17	132.24	132.27	132.10
C-5'	135.05	135.04	135.03	135.03	135.05	134.94	134.93	135.14
C-6'	134.69	134.71	134.68	134.68	134.70	134.66	134.66	134.74
C-7'(11')	127.14	127.13	127.11	127.12	127.13	127.09	127.09	127.13
C-8'(10')	129.83	129.84	129.80	129.81	129.83	129.81	129.80	129.85
C-9'	134.27	134.27	134.24	134.25	134.25	134.26	134.27	134.25
C-12'	9.59	9.61	9.59	9.58	9.59	9.60	9.58	9.62
C-1"	129.02	125.64	127.89	128.23	128.43	126.27	121.29	134.60
C-2"(6")	127.24	129.96	128.98	129.06	128.75	127.09	129.03	128.69
C-3"(5")	129.73	116.95	129.80	132.72	138.53	130.19	115.08	124.74
C-4"	132.98	164.62	137.57	126.52	100.75	143.39	162.83	149.66
C-7"						21.13	55.69	

The assignment of the chemical shifts of the aromatic ring B was made by comparison with the calculated values which were obtained by adding the substituent effects¹⁰ of F, Cl, Br, I, CH_3 , OCH_3 and NO_2 to the chemical shifts of $\mathbf{3}_{\text{a}}$. Figure 1 shows the correlation between the calculated and measured chemical shifts, which can be expressed as the straight line $y = a + bx$ with a good correlation coefficient 0.99. The calculated and measured chemical shift values differed by an average of *ca.* 0.95 ppm. The ^{13}C , ^{19}F coupling constants of compound $\mathbf{3}_{\text{b}}$ are 251.5 Hz ($^1J_{\text{C-F}}$), 22.1 Hz ($^2J_{\text{C-F}}$) and 9.1 Hz ($^3J_{\text{C-F}}$) for C-4", C-3"(5") and C-2"(6"), respectively, which coincide with the published data.¹⁰

Compound $\mathbf{3}_{\text{a}}$ was utilized to determine the substituent-induced chemical shift (SCS) effects of the s-triazolo[3,4-*b*]-1,3,4-thiadiazole nucleus on the aromatic ring B, which are deshielding at the *ipso*-, *meta*- and *para*-carbons and shielding at the *ortho*-carbon. The results can be represented as follows (taking

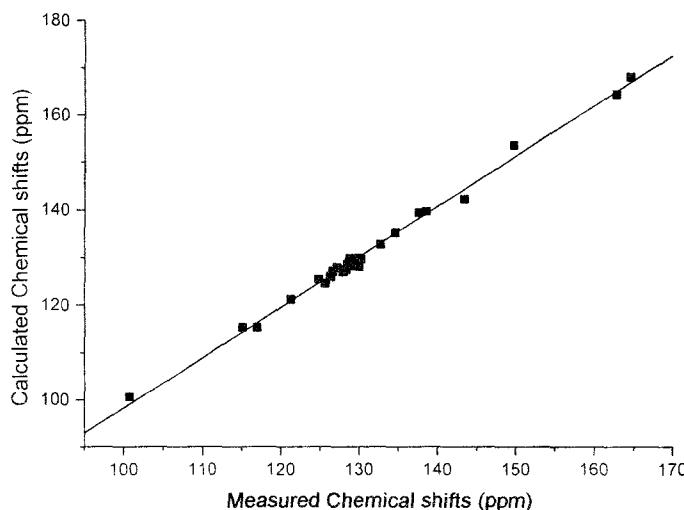


FIG. 1 Correlation between calculated and measured chemical shifts

the δ value for benzene as 128.5 ppm) C-*ipso* +0.52, C-*ortho* -1.26, C-*meta* +1.23 and C-*para* +4.48 ppm, which reflects the electron-withdrawing ability of the *s*-triazolo[3,4-*b*]-1,3,4-thiadiazole nucleus.

With the aid of two-dimensional (2D) HMBC technique, the assignment of C-4', C-5' and C-6 becomes a relatively straightforward task. In compound **3f**, the triazole methyl signal at δ 2.63 ppm shows two correlation peaks with carbons at δ 132.24 and 134.94 ppm, which are assigned to C-4' and C-5', respectively, on the grounds of peak intensities related to the value of the long-range coupling constant. The highly deshielded carbon at δ 166.80 ppm can be assigned to C-6 based on the $^3J_{C-H}$ correlation with H-2"(6"), which appear at δ 7.88 ppm. Therefore, only C-3 and C-7a remained unassigned, those at δ 139.96 and 153.83 ppm. The large δ value should be identified as C-7a for it is bonded to an additional sulfur atom compared with C-3. These five quaternary carbons of other compounds were

unambiguously assigned by comparison with **3f**. Inspection of these five carbons revealed that the variation in chemical shift values was the greatest for C-6 and the least for C-4' and C-5', consistent with the increase in distance from the aromatic ring B.

It appears that the C-6 chemical shifts can not be well correlated with Hammett's constants of the substituents (with a correlation coefficient 0.83). To evaluate the contribution of the field and resonance effects, attempts were made to correlate the C-6 chemical shifts with the F and R constants using the Swain-Lupton equation.¹¹ However, the multiple linear regression also gave unsatisfactory results ($r = 0.84$).

ACKNOWLEDGEMENTS

The financial support of the National Natural Science Foundation of China is gratefully acknowledged.

REFERENCES

1. Bano, Q., Tiwari, N., Giri, S., Nizamuddin *Indian J. Chem.*, **1992**, *31B*, 714.
2. Prasad, A. R., Ramalingam, T., Bhaskar Rao, A., Diwan, P. V., Sattur, P. B. *Indian J. Chem.*, **1986**, *25B*, 566.
3. Mody, M. K., Prasad, A. R., Ramalingam, T., Sattur, P. B. *J. Indian Chem. Soc.*, **1982**, *59*, 769.
4. Imtiaz Husain, M., Kumar, V. *Indian J. Chem.*, **1992**, *31B*, 673.
5. Zhang, Z. Y., Sun X. W., Chu, C. H., Zhao, L. *J. Chin. Chem. Soc.*, **1997**, *44*, 535.
6. Zhang, Z. Y., Li, M., Zhao, L., Li, Z. M., Liao, R. A. *Youji Huaxue*, **1993**, *13*, 397.
7. Zhang, Z. Y., Li, M., Zhao, L., Li, Z. M., Liao, R. A. *Chem. J. Chin. Univ.*, **1993**, *14*, 512.
8. Reid, J. R., Heindel, N. D. *J. Heterocyclic Chem.*, **1976**, *13*, 925.

9. Sun, X. W., Xu, P. F., Zhang, Z. Y. *Magn. Reson. Chem.*, **1998**, *36*, 459.
10. Breitmaier, E., Voelter, W. *¹³C NMR Spectroscopy*, 2nd ed. Verlag Chemie; Weinheim, **1978**.
11. Swain, C. G., Lupton, E. C. *J. Am. Chem. Soc.*, **1968**, *90*, 4328.

Date Received: August 24, 1998

Date Accepted: July 15, 1999